Mark Scheme - 3.7 Entropy and Feasibility of Reactions

1 (a)	(i)	atomisation of magnesium / vaporisation of magnesium	[1]
	(ii)	increased ratio positive charge on nucleus: number of electrons	[1]
	(iii)	is positive because the (negative) electron is repelled by negative species	[1]
	(iv)	lattice enthalpy is -3835(kJ mol ⁻¹) numerical value (1) negative sign (1)	[2]
(b)	(i)	gases are more random/ have more disorder / move more freely and therefore higher entropy	have a [1]
	(ii)	$\Delta S = 21.8 (JK^{-1}mol^{-1})$	[1]
	(iii)	$\Delta G = \Delta H - T\Delta S (1)$ ft from (ii)	
	ΔG must be –ve if reaction to be spontaneous/ to calculate T make ΔG = 0 (1)		
		0 = 318000 - T 21.8 T = 14587/14600 (K) (1)	[3]
(c)	use of aqueous sodium hydroxide (1)		
	white precipitate for all possible ions (1)		
	excess aqueous sodium hydroxide – precipitate dissolves for Pb2+ and Al3+ (1)		
	use of aqueous (potassium) iodide/ hydrochloric acid/ sulfuric acid / soluble		
	chloride/ soluble sulfate (1)		
	result – yellow ppt for Pb ²⁺ + I ⁻ and no ppt for Al ³⁺ / white ppt for Pb ²⁺ + Cl ⁻ or SO ₄ ²⁻		
	and no ppt for Al ³⁺ [result for both needed] (1)		[5]
	QWC Organisation of information clear and coherent (1)		
		Use of specialist vocabulary (1)	QWC [2]
(d)	(i)	diagram to show central Al, 4 Cl and 4 shared pairs of electrons, all Cl outer electrons, dative pair identifiable	[1]
	(ii)	chlorination of benzene (1) produces CI ⁺ as electrophile (1)	
		OR gives ionic liquids (1) with low vapour pressure/ non-volatile/ do not evapour	rate
		in use (1)	
		OR catalyst (1) in polymerisation of alkenes (1)	[2]
		- T	Total [20]

2.

(a)
$$2 \times (0) + 3 \times (-394) - (-826) - 3 \times \Delta H^{\theta}_{f}(CO) = -23 (1)$$

 $2 \times (\Delta H^{\theta}_{f}(Fe)) + 3 \times (\Delta H^{\theta}_{f}(CO_{2})) - (\Delta H^{\theta}_{f}(Fe_{2}O_{3})) - 3 \times \Delta H^{\theta}_{f}(CO) = -23 (1)$
 $-1182 + 826 + 23 = 3 \times \Delta H^{\theta}_{f}(CO)$
 $-333 = 3 \times \Delta H^{\theta}_{f}(CO)$
 $-111 \text{ kJ mol}^{-1} = \Delta H^{\theta}_{f}(CO) (1)$ [3]

- (b) Gases have higher entropies than solids as the molecules have a greater degree of freedom / disorder [1]
- (c) (i) $\Delta G = \Delta H T \Delta S = -23 (298 \times 9/1000)$ (1) $= -25.7 \text{ kJ mol}^{-1} \text{ (1)}$ [2]
 - (ii) A reaction is feasible when ΔG is negative (1)

No temperature exists where ΔG is positive / ΔG is negative at all temperatures (1)

(iii) Higher temperature used to increase rate of reaction [1]

Total [9]

3.

(a) $CO \rightarrow C +2 CO_2 \rightarrow +4$ (1)

Increase of (positive) oxidation number = oxidation / reducing agents themselves are always oxidised are always oxidised (1)

OR

 $I_2O_5 \rightarrow I +5$ $I_2 \rightarrow I_2 0$ (1)

Oxidation number of iodine reduced, reduction occurring, CO reducing agent (1) [2]

- +2 state becomes mores stable down the group and +4 becomes less stable.
- (c) (i) Add (a little) sodium hydroxide solution (1) to each solution.

 A white precipitate (1) of aluminium / lead(II) hydroxide (1) is seen.

 When more sodium hydroxide solution is added these precipitates (dissolve giving a colourless solution). (1)

 [4]

QWC Legibility of text: accuracy of spelling, punctuation and grammar; clarity of meaning. [1]

- (ii) Yellow precipitate (1) $Pb^{2+} + 2I^{-} \rightarrow PbI_{2}$ [2]
- (d) (i) The bonding of aluminium in the monomer has not completed the octet / suitable diagram / 6 electrons in its outer shell (1)

 When the dimer is formed this octet of bonded electrons is formed (1)

- (ii) (As a catalyst) in the chlorination of benzene / making ionic liquids [1]
- (iii) I The number of (gaseous) species is increasing, leading to less order [1]
 - II For the reaction to be just spontaneous $\Delta G = 0$ (1)

substituting 0 = 60 000 - 88 T

 $T = 60000/88 = 682 \text{ K}/409^{\circ}\text{C}$ (1) [2]

(e)
$$K_c = [[\underline{A1(H_2O)_5(OH)}]^{2+}(aq)][[\underline{H^{+}}](aq)]$$
 $[[\underline{A1(H_2O)_6}]^{3+}(aq)]$

$$\therefore 1.26 \times 10^{-5} = [H^{+}]^{2} / 0.10$$

$$\therefore [H^{+}]^{2} = 1.26 \times 10^{-6} [1]$$

$$\therefore [H^{+}] = \sqrt{1.26 \times 10^{-6}} = 1.12 \times 10^{-3} / 0.00112 (1)$$
- error carried forward

pH = $-\log_{10} [H^+]$ = $-\log_{10} 1.12 \times 10^{-3}$ = 2.95 (1) [3]

Total [20]